Utica High School Advanced Chemistry 2

Instructor: Jeremy Krausz Email: jkrausz@northfork.k12.oh.us Website: TBD Phone: 740-892-2855 Office Hours: Mornings before school 6:45 – 7:15 in room 206 or by appointment

Course Description: This course is designed for students who plan to pursue a career in science, engineering or a medical field. Emphasis is placed on a theoretical, practice, and quantitative approach to chemistry principles with extensive laboratory experimentation. Topics include atomic, kinetic, and acid base theory, thermo chemistry, chemical equilibria, electro-chemistry, and chemical thermodynamics.

Materials needed: Students MUST have all materials, including textbook and iPads, in class every day. Students must have a scientific calculator, a 3-ring binder and paper with sections for notes, labs, and homework/classwork, a pencil, pen, and colored pen. Classwork and homework may only be completed in black or blue ink or pencil.

Grading Scale:	Grade Weights:
\circ 90 - 100 = A	 Tests – 50%
\circ 80 - 89 = B	 Quizzes – 15%
○ 70 - 79 = C	 Labs Classwork/Homework – 35%
\circ 60 - 69 = D	
\circ 0-59 = F	

Major Course Projects and Instructional Activities:

Tests: Test will be given at the end of a unit and represent student knowledge for the topic. There will be 3 or 4 test given per 9 week period.

- Quizzes: Quizzes are given frequently over the course content. They often fall in the middle of a unit to check for student understanding.
- Labs: Major laboratory experience will include a written lab report that represents students understanding of the lab and the data collected during the lab.
- Daily Classwork and Homework: Short assignments done in class and daily homework assignments completed outside of class.

At the end of the 1st 9-weeks, the 9 weeks average will count towards 20% of the grade, and the midterm and final exams counting for the remaining 20% (10% each). The average of four 9-weeks grades will count for 80% of the final course grade and the midterm and final will count for the remaining 20% of the final grade.

Denial of Credit Policy for Full-Year Course:

DENIAL OF CREDIT due to absence

Any student who accrues non-professional absences in excess of four (4) days in a nine week period will be subject to receive zeroes on assignments for every additional day of non-professional absence for the remainder of the 9 weeks for each class that this takes place. Each new nine weeks every student will begin with a clean slate with regard to period attendance. Denial of credits can be appealed in writing only to the building principal.

Class Participation

What you put into this class will be what you get out. Active participation is essential in Chemistry. This class is not meant to be observation. You will be given many opportunities to participate in class discussions, activities, and labs. Your grade will reflect poor participation. Remember, poor participation includes not paying attention to discussions, lectures, or instructions; sleeping; talking; and being generally disruptive.

Test Retakes

Students may retake tests for a maximum score of 80%. Retake will be done during study hall, before/after school, or academic assist. You may only retake one exam per unit of study. **If a test is assigned during remote learning there will not be a retake.**

Classroom Policies:

• Everyone is expected to be in their seats preparing to start class before the tardy bell rings. When the bell rings, students should complete daily bell work in their folders. Homework and other assignments will be due shortly after the bell.

• **Mutual respect is required at all times.** Everyone's opinions and contributions in class are welcomed. When someone else is talking you must be courteous.

• **Come to class prepared with all your materials.** You will need to bring your note- book , iPad, textbook and calculator to class everyday.

• All students will wait for specific instructions before entering the lab. No student should use the sinks, gas jets, safety shower or emergency eye wash unless you have permission from the instructor.

• **Safety rules must be followed at ALL times.** The rules are in place to ensure that every student in the room is as safe as possible in all situations.

Absences/Missed Assignments, Quizzes, Tests:

It is your responsibility to make up any missed work not exceeding one day more than the period of absence. Check the class website. Come see me when you miss a day. I will point you towards anything you missed. If there were any additional notes that were not part of a handout, you are responsible for getting them from a partner. You will also need to get with someone in the class who can give you an overview of the class you missed. You are responsible for keeping up with these things during non-instruction time. IF YOU MISS A DAY, IT IS YOUR RESPONSIBILITY TO GET CAUGHT UP!

If you are absent for a quiz or test day, you are expected to take the test/quiz on the day you return to class. Be prepared.

The majority of the work in this course is cumulative. Therefore, keeping up with **your** work will help to insure **your** success.

Recommended/Required Readings: Students are encouraged and may be required to read articles from current science journals and magazines.

Course Calendar / Pacing

Chapter	Main Topics
Foundations	 Scientific Method / Inquiry Measurement Significant Figures Dimensional Analysis Classification of Matter
Atoms, Ions, Molecules	 Atoms and Atomic Structure Molecules Ions Periodic Table Nomenclature and Formulas
Stoichiometry	 Moles and Molar Mass Percent Composition Empirical Formulas Balanced Equations Stoichiometric Calculations Percent Yield
Reaction Types and Solution Stoichiometry	 Water Solutions Precipitation Reactions Acid - Base Reactions

	Oxidation Reduction Reaction
	3 Gas Laws and Combined
	Ideal Gas Law
Gases	Gas Stoichiometry
	Dalton's Law
	Effusion and Diffusion
	Real Gases
	• Energy
Thermochemistry	Enthalpy and Calorimetry
	Hess' Law
	Standard Enthalpies of Formation
	Sources of Energy
_	Electromagnetic Radiation
Atomic Structure	Atomic Models
Periodicity	Orbitals
	Quantum Mechanics
	Aufbau, Pauli, Hund
	Periodic Trends
	Hydrocarbons
Organic	Functional Groups
	• Isomers
	Polymers
	Reactions
	Types of Bonds
Bonding	Electronegativity
-	Ionic Bonds
	Covalent Bonds
	Metallic Bonds
	Lewis Structures
	VSEPR Model
	Hybridization
	Bonding Models
	Intermolecular Forces
Liquids	Structure of Solids
and Solids	Structure of Metals
	INETWORK ATOMIC Solids Molecular Solids
	Moleculal Solids Jonic Solids
	Ionic Solids Vanor Pressure
	Phase Diagrams
	Types of Solutions
Solutions	Solubility Factors
	Concentration
	Colligative Properties
	Colloids
	Intro Rate Laws
Kinetics	Reaction Rates-Factors
	Rate Laws
	Integrated Rate Law
	Reaction Mechanisms
	Catalysis

	The Equilibrium Condition
Equilibrium	Equilibrium Constant
-	Equilibrium and Pressure
	Heterogeneous Equilibria
	Applications of the Equilibrium Constant
	Solving Equilibrium Problems
	Le Chatlier's Principle
	Acid-Base Theories
Acids	Conjugate Pairs
and Bases	Concept of pH
	Calculations of Strong Acids and Bases
	Weak Acids and Bases
	Polyprotic Acids
	Acid-Base Equilibria
Applications of Aqueous	Acid-Base with Common Ions
Equilibria	Buffers
	Titrations and pH Curves
	pH indicators
	Solubility Equilibria
	Solubility Product
	Selective Precipitation
	Qualitative Analysis
_	Spontaneity
Spontaneity,	• Entropy
Entropy,	Effect of Temperature
and Free Energy	Free Energy
	Entropy Changes in Reactions
	Free Energy and Pressure
	Free Energy and Equilibrium
	• Free Energy and Work

	Galvanic Cells
Electrochemistry	 Standard Reduction Potentials
-	Cell Potential
	Concentration Cells
	Batteries
	Corrosion
	Electrolysis